Ordinary Isotropic Peridynamic Models Position Aware Viscoelastic(PAVE) SAND2015-3078 C

John Mitchell Center for Computing Research Sandia National Laboratories, Albuquerque, New Mexico

Sandia National Laboratories is a multi-program laboratory managed and operated, by Sandia Corporation a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL8500.

Ordinary peridynamic models: surface effects *Position Aware* models correct for this

Causes relate to material points near surface

- → Mathematical models assume all points are in the bulk
 - * Points near surface are missing bonds
 - * Missing bonds imply and induce incorrect material properties
 - * In the bulk mathematical models are consistent
- → Kinematic defects at the surface

Surface effects in ordinary peridynamic models Tension test: ordinary isotropic elastic model (LPS)

The following related aspects contribute to mismatch.

- Geometric surface effects
- Nonlocal model kinematics
- Nonlocal model properties
- Discretization error

Position Aware Models Outline

- Preview the practical issue/problem of surface effects
- → Introduce *Position Aware* models
- → Selecting/creating/evaluating influence functions (briefly)
- → Demonstration calculations
 - * Position Aware Linear Solid (PALS)
 - * Position Aware Viscoelastic (PAVE)

Maturation & extension of material models

Ordinary material models Silling, Epton, Weckner, Xu, and Askari, 2007

Integral equation for internal force density f of particle x

$$\rho(x)\ddot{u}(x,t) = f(x,u(x,t),t) + b(x,t)$$

$$f(x,u(x,t),t) = \int_{H} \{T(Y)[x]\langle\xi\rangle - T(Y)[Q]\langle-\xi\rangle\} dV_{Q}$$
Ordinary

Ordinary

Ordinary material models Silling, Epton, Weckner, Xu, and Askari, 2007

The vector force state *T* is given as:

$$T(Y) = t(Y)M(Y)$$
 where $M(Y) = \frac{Y}{|Y|}$

Scalar force state t(Y) defines *ordinary* material model. More later.

Kinematic peridynamic states: \underline{e} , θ , $\underline{\varepsilon}$

Scalar extension state: e

$$\underline{e}\langle\xi\rangle = |Y| - |\xi|$$

Dilatation: θ

$$\begin{split} \theta &= (\underline{\omega}|\xi|) \bullet \underline{e} \\ &= \int_{H} \underline{\omega} |\xi| \underline{e} \langle \xi \rangle \, dV_Q \end{split}$$

Deviatoric extension state: $\underline{\varepsilon}$

$$\underline{\varepsilon} = \underline{e} - \frac{\theta|\xi|}{3}$$

Position Aware Linear Solid (PALS) Mitchell, Silling, and Littlewood, 2015

Scalar force state obtained from elastic energy density functional

$$W(\theta,\underline{\varepsilon}) = \frac{\kappa \theta^2}{2} + \mu(\underline{\sigma}\underline{\varepsilon}) \bullet \underline{\varepsilon}$$

Position Aware Linear Solid (PALS) Mitchell, Silling, and Littlewood, 2015

Scalar force state obtained from elastic energy density functional

$$W(\theta,\underline{\varepsilon}) = \frac{\kappa \theta^2}{2} + \mu(\underline{\sigma \varepsilon}) \bullet \underline{\varepsilon}$$

Scalar force state

$$t(Y) = p\underline{\omega}x + 2\mu\underline{\sigma}\varepsilon$$

Position Aware Linear Solid (PALS) Mitchell, Silling, and Littlewood, 2015

Scalar force state obtained from elastic energy density functional

$$W(\theta,\underline{\varepsilon}) = \frac{\kappa \theta^2}{2} + \mu(\underline{\sigma \varepsilon}) \bullet \underline{\varepsilon}$$

Scalar force state

$$t(Y) = p\underline{\omega}x + 2\mu\underline{\sigma}\varepsilon$$

Scalar force state with deviatoric *in-elastic* deformations $\underline{\varepsilon}^p$

$$t(Y) = p\underline{\omega x} + 2\mu\underline{\sigma}\underbrace{(\underline{\varepsilon} - \underline{\varepsilon}^p)}_{elastic}$$

Position Aware Viscoelastic(PAVE) Mitchell, 2015

Scalar force state obtained from elastic energy density functional

$$W(\theta,\underline{\varepsilon}) = \frac{\kappa \theta^2}{2} + \mu_{\infty}(\underline{\sigma}\underline{\varepsilon}) \bullet \underline{\varepsilon} + \sum_{i} \mu_{i}(\underline{\varepsilon} - \underline{\varepsilon}^{i})\underline{\sigma} \bullet (\underline{\varepsilon} - \underline{\varepsilon}^{i})$$

Position Aware Viscoelastic(PAVE) Mitchell, 2015

Scalar force state obtained from elastic energy density functional

$$W(\theta,\underline{\varepsilon}) = \frac{\kappa \theta^2}{2} + \mu_{\infty}(\underline{\sigma}\underline{\varepsilon}) \bullet \underline{\varepsilon} + \sum_{i} \mu_{i}(\underline{\varepsilon} - \underline{\varepsilon}^{i})\underline{\sigma} \bullet (\underline{\varepsilon} - \underline{\varepsilon}^{i})$$

Scalar force state

$$t(Y) = p\underline{\omega x} + 2\mu_{\infty}\underline{\sigma \varepsilon} + 2\sum_{i} \mu_{i}\underline{\sigma}(\underline{\varepsilon} - \underline{\varepsilon}^{i})$$

Position Aware Viscoelastic(PAVE) *Mitchell, 2015*

Scalar force state obtained from elastic energy density functional

$$W(\theta,\underline{\varepsilon}) = \frac{\kappa \theta^2}{2} + \mu_{\infty}(\underline{\sigma}\underline{\varepsilon}) \bullet \underline{\varepsilon} + \sum_{i} \mu_{i}(\underline{\varepsilon} - \underline{\varepsilon}^{i})\underline{\sigma} \bullet (\underline{\varepsilon} - \underline{\varepsilon}^{i})$$

Scalar force state

$$t(Y) = p\underline{\omega x} + 2\mu_{\infty}\underline{\sigma \varepsilon} + 2\sum_{i} \mu_{i}\underline{\sigma}(\underline{\varepsilon} - \underline{\varepsilon}^{i})$$

Governing equation for $\underline{\varepsilon}^i$

$$\underline{\dot{\varepsilon}}^i + \frac{1}{\tau_i} \underline{\varepsilon}^i = \underline{\varepsilon}(t)$$

PALS: influence function construction

PALS (position aware linear solid) model

- $\hookrightarrow \underline{\omega}, \underline{\sigma}$ are computed for each point in mesh
- \hookrightarrow Initial influence functions $\underline{\omega}^0$, $\underline{\sigma}^0$ given
- \hookrightarrow Select $\underline{\omega}$, $\underline{\sigma}$ as best approximations to $\underline{\omega}^0$, $\underline{\sigma}^0$ subject to kinematic constraints: *matching deformations* $\underline{e}^k \langle \xi \rangle = \frac{\xi \cdot H^k \xi}{|\xi|}$

$$I(\underline{\omega}, \lambda) = \frac{1}{2} (\underline{\omega} - \underline{\omega}^0) \bullet (\underline{\omega} - \underline{\omega}^0) - \sum_{k=1}^K \lambda^k \Big[(\underline{\omega} \underline{x}) \bullet \underline{e}^k - \operatorname{Tr} \mathbf{H}^k \Big]$$

$$N(\underline{\sigma},\tau) = \frac{1}{2}(\underline{\sigma} - \underline{\sigma}^0) \bullet (\underline{\sigma} - \underline{\sigma}^0) - \sum_{k=1}^K \tau^k \Big[(\underline{\sigma}\underline{\varepsilon}^k) \bullet \underline{\varepsilon}^k - \gamma^k \Big]$$

Model problem: simple shear *PALS* versus *LPS*: expectation *dilatation* $\theta = 0$

Simple shear

$$u = \tilde{\gamma}y; \quad v = 0; \quad w = 0; \quad \tilde{\gamma} = 1.0 \times 10^{-6}$$

Dilatation

John Mitchell

Model problem: simple shear PALS and $PA\acute{V}E$

Stored elastic energy density

Crack Opening Displacement: Schematic

Crack Opening Displacement Model Convergence

Crack Opening Displacement Mesh Convergence

Recover Young's modulus *E* Tensile test

PALS model: sharply reduces surface effects

PALS model: significant step toward making peridynamics accurate as a general-purpose simulation capability

Position Aware Linear Solid (PALS)

Conclusions

- Previewed the practical issue/problem of surface effects
- → Introduced novel *Position Aware Linear Solid* model (PALS)
 - * Addresses inaccuracies (LPS) due to missing bonds near surface
- → Introduced novel *Position Aware Viscoelastic* model (PAÝE)
- → Demonstration calculations of new PAÝE model
- → Demonstration calculations show efficacy of PALS

THANK YOU Questions?

